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Abbreviations/Definitions 

ASTER:    Advanced  Spaceborne  Thermal  Emission  and  Reflection  Radiometer  

Buffer:   Circular  area  (with  a  specified  radius  of  0800  meters  (m))  centered  

around  an  outdoor  temperature  monitoring  unit  

Emissivity:  The  ratio  of  the  radiation  emitted  by  a  surface  to  the  radiation  emitted  by  a  

blackbody  at  the  same  temperature,  i.e.,  how w ell  different  surfaces  reflect  

solar  energy  

GIS:    Geographic  Information  Systems  

HHWS:   Heat  Health  Warning  System  

L5TM:   the  Landsat5  satellite  Thermal  Mapper   
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LST:  Land  Surface  Temperature,  ontheground  temperature  estimate  derived  

from  L5TM  measurements  

MODIS:    Moderate  Resolution  Imaging  Spectroradiometer  

NDVI:    Normalized  Difference  Vegetative  Index  

NLCD:   National  Land  Cover  Dataset  

NOAAAVHRR:  National  Oceanic  and  Atmospheric  Administration  Advanced  Very  High  

Resolution  Radiometer  

SI:  Percent  surface  imperviousness, p ercentage  of  surface  impenetrable  by  

water  

USGS:    United  States  Geological  Survey  
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Abstract 

Background: Land surface temperature (LST) and percent surface imperviousness (SI), both 

derived from satellite imagery, have been used to characterize the urban heat island effect, a 

phenomenon in which urban areas are warmer than nonurban areas. 

Objectives: We aimed to assess the correlations between LSTs and SI images with actual 

temperature readings from a groundbased network of outdoor monitors. 

Methods: We evaluated the relationships between 1) LST calculated from a 2009 summertime 

satellite image of the Detroit Metropolitan Region, Michigan, 2) SI from the 2006 National Land 

Cover Data Set, and 3) groundbased temperature measurements monitored during the same time 

period at 19 residences throughout the Detroit Metropolitan Region. Associations between these 

groundbased temperatures and the average LSTs and SI at different radii around the point of the 

groundbased temperature measurement were evaluated at different time intervals. Spearman 

correlation coefficients and corresponding pvalues were calculated. 

Results: Satellite derived LST and SI values were significantly correlated with 24hour average 

and August monthly average ground temperatures at all but 2 of the radii examined (100 m for 

LST and 0 m for SI). Correlations were also significant for temperatures measured between 4:00 

and 5:00 a.m. for SI, except at 0 m, but not LST. Statistically significant correlations ranging 

from 0.49 to 0.91 were observed between LST and SI. 

Conclusions: Both SI and LST could be used to better understand spatial variation in heat 

exposures over longer time frames but are less useful for estimating shorter term, actual 

temperature exposures, which can be useful for public health preparedness during extreme heat 

events. 

4




 

 

 

 

                

           

            

                 

             

              

            

            

        

                 

               

            

               

            

            

              

       

             

                     

                  

               

Page 5 of 34 

INTRODUCTION 

Use of thermal remote sensing and advanced spatial modeling are emerging trends in the field of 

environmental epidemiology and public health. Geospatial technologies provide a valuable 

resource to assist public health practitioners and emergency response planners in identifying 

areas that are most at risk and using these scientific outputs to inform policies and practices. 

Thermal remote sensing products such as thermal images captured by the Landsat5 Thermal 

Mapper (L5TM) instrument have been used to study areas of higher relative temperatures within 

a city, also known as microurban heat islands (Johnson 2009). 

L5TM has an advantage over other sensors, like the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (http://modis.gsfc.nasa.gov/about/) (MODIS 2011), in that L5TM 

provides a spatial resolution of 120 m (compared to 1000 m for the thermal band of MODIS), 

though it provides only 16day repeatability, at best, compared to 1day for MODIS (Aniello et 

al. 1995). Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is 

another sensor that could be used but imagery is not available free of charge 

(http://asterweb.jpl.nasa.gov/) (NASA 2012). The data captured by satellite can be transformed 

into several helpful measures, including land surface temperatures (LST) and percent surface 

imperviousness (SI). LSTs are a primary factor in determining surface radiation and human 

comfort in cities (Weng 2009). 

The higher spatial resolution of L5TM information is important in microurban heat island 

studies, so we focus on those data here. The SI is defined as the percent of the surface of an area 

that is not penetrable by water, such as concrete or asphalt, and can be mapped at a 30meter 

resolution with L5TM. This characteristic has been commonly used in studies to assess the 
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degree of urbanization of an environment as well as explore the spatial extent of surface urban 

heat islands (Roy and Yuan 2009). 

The relationship between LST and vegetated areas has been documented in the literature. A 

study by Aniello and colleagues compared the spatial distribution of microurban heat islands 

and tree cover in Dallas, Texas using L5TM and GIS (Aniello et al. 1995). They examined the 

usefulness of L5TM for classifying treecover information and using thermal band 6 to produce 

a thermal map of Dallas. Their methods involved processing and classifying L5TM images and 

tree cover data in GIS. While L5TM data was useful for mapping microurban heat islands in 

Dallas, the authors recommended use of exact ontheground temperatures for image calibration 

in future studies. Remote sensing data have been used to help model urban surface temperatures; 

specifically, validating LST data with actual ontheground temperature measurements, known as 

groundtruthing. For example, strong correlations between satellitederived air temperatures and 

in situ measurements were found when characterizing urban heat island intensity in Hong Kong, 

using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite 

imagery (Fung et al. 2009). Comparisons between ground temperatures and estimated 

temperatures using imagery from MODIS, the National Oceanic and Atmospheric 

Administration Advanced Very High Resolution Radiometer (NOAAAVHRR) and Landsat 

TM, showed a very high correlation in both urban and rural areas (Rigo et al. 2006). While 

previous studies have used Landsat to create prediction models for surface temperature, and 

shown strong correlations between surface temperature and surface imperviousness (Cheung et. 

al, 2002), few studies have simultaneously explored the relationship between SI, groundbased 

temperature measures and LST calculated from thermal imagery. 
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Adaptation to the consequences of climate change, as future scenarios of heatrelated morbidity 

and mortality become a major public health concern, requires predicting areas of high 

vulnerability to heat in cities. Epidemiologic studies on heat and health have begun to use 

satellitederived temperatures (instead of temperature data from the nearest airport) and land 

cover to potentially provide more refined heat exposure classifications. A study in Philadelphia 

used geographic information systems (GIS) and thermal imaging to investigate the relationship 

between the spatial distributions of vulnerable populations, urban heat island intensities and heat

related deaths (Johnson and Wilson 2009). This study recommended that more multiyear 

studies use spatial modeling and remote sensing methods to better help determine areas of risk 

throughout cities 

Uejio and colleagues used Landsat TM and ETM+ data to determine the magnitude and spatial 

variation of mean radiant surface temperature for different densities of impervious surface area 

(ISA), to further document the change in air trends and air quality that can result from 

transforming land use from rural to urban (Uejio et al. 2011). Harlan and colleagues used 

Landsat (30 meter resolution) to calculate NDVI and estimated surface temperatures (Harlan et 

al. 2012). 

There is still a need to understand how proxies for heat exposure correlate with actual heat 

exposure. Harlan and colleagues provide correlations between the mean NDVIs and surface 

temperatures at the Census block group level. Our study goes beyond this comparison by 

correlating SI, land surface temperature (estimated from Landsat) and actual temperature 

measurements made by a groundbased temperature monitor network over the summer. Our 

study is novel for evaluating the correlations between satellitederived temperatures and a 

groundbased temperature network with high temporal (10 minutes) and spatial resolution (19 
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monitors over a range of levels of SI within a single county) at a height relevant to human health 

(1.5 meters above the ground). Further, it characterizes these features in metropolitan Detroit, 

Michigan, USA, a location where people may be poorly adapted to heat and several 

epidemiologic studies have already shown important and socially unequal health consequences 

associated with hot weather (O’Neill et al. 2003; Schwartz et al. 2004; Sheridan and Kalkstein 

2010, Anderson and Bell 2009). 

Indeed, integrating information from groundbased temperature monitoring networks and 

satellitederived images using a GIS platform can provide useful data for exposure assessments 

in most urban areas, specifically for the study of heatrelated death and illness. Validation of 

satellite data sources by groundtruthing can help characterize and identify neighborhoodlevel 

urban heat islands, which could be useful for public health professionals and urban planners to 

prevent heatrelated mortality and other adverse health effects from high summer temperatures. 

This type of data could also direct intervention strategies to reduce the urban heat island effect. 

Some previously published work did not explicitly address the practical challenges of integrating 

insights from groundtruthing studies with public health research and applications (Lo and Faber 

2003). 

The purpose of this study is to apply a public health perspective to a determination of whether 

spatial variation of temperatures within a network of groundbased outdoor temperature monitors 

is correlated with satellite derived LST and SI. Although we did not expect LST (which 

represents the temperature of the ground) to completely predict the temperature of the air at a 

height relevant to human health, we hypothesized that the air temperatures measured by a 

groundbased temperature monitoring network would be highly correlated with LST, as well as 

values of SI. 

8




 

 

 

 

               

            

               

                

              

                

              

                 

         

               

               

             

                 

               

              

          

             

               

              

             

              

Page 9 of 34 

METHODS 

Ground based temperature monitoring network and surface imperviousness 

Sites in our groundbased temperature monitor network in the Detroit metropolitan region 

(Wayne County, Michigan) were selected with site SI values ranging from 0 to 100 percent 

imperviousness with buffer zones around each site ranging from 0 to 800 meters.. We picked 

both urban and rural locations to assess the temperature differences amongst areas within the 

same county that might have different landuse patterns. This strategy was, in part, designed to 

evaluate the existence of urban heat island structure in the Detroit metropolitan region (Oswald 

et al. 2012; Zhang et al. 2011). Using SI from the United States Geologic Survey (USGS) NLCD 

product (MRLC 2013) (http://www.mrlc.gov/nlcd2006.php), halfmile smoothing of every pixel 

was performed and SI was classified by decile. Once the SI surrounding various prospective 

residential sites for placing the temperature monitors was established and a range of SI levels 

was ensured by the sampling strategy, home occupants were approached, explained the purpose 

of the study and asked if they would be willing to have a temperature monitor outside their 

homes. All volunteers signed an agreement letter to participate. The research was compliant 

with all relevant national, state and local human subjects regulations. 

HOBO Pro v2 U23002 (external temperature/relative humidity) outdoor temperature monitoring 

devices from the Onset corporation [Onset HOBO Data Loggers, Pocasset, MA] were calibrated 

and used to record temperature and relative humidity at 10minute intervals from June 13 to 

September 30, 2009. The calibration process involved collocating the monitors in a controlled 

environment along with a temperature probe from the National Institute of Standards and 

Technology to ensure that the temperatures recorded were within the accuracy range reported in 
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the operation manual, i.e. + 0.21
o 

C, within an ambient temperature range of 0 to 50
o 

C 

(http://www.onsetcomp.com/files/manual_pdfs/10694KMANU23.pdf) (ONSET 2013). 

Monitors were positioned in residential grasscovered backyards of volunteers following a strict 

placement protocol that required monitors to be sited at least 10 feet (3 m) away from buildings, 

homes and trees; 1.5 m from the actual surface [to better assess the level of exposure that would 

be experienced by a person of average height and to be consistent with the instrument siting 

protocols used by The World Meteorological Organization, as well as NOAA’s National 

Weather Service (WMO 2008)]; not in the direct pathway of automatic lawn sprinkling systems; 

not in a shady area or near falling objects; away from power lines and swampy damp ground; 

and facing southwest. 

Processing the LANDSAT L5TM satellite image to derive land surface temperature 

Images of the Earth were taken nearly continuously from March 1, 1984 to November 2011 on a 

16day cycle by the L5TM, which consistently imaged the Detroit Metropolitan Region at about 

12:05 p.m. Eastern Daylight Time (EDT) at each pass. L5TM captured images collected at a 

705 km altitude, 185 km swath, 120m spatial resolution for thermal band data and 30m 

resolution for the other spectral bands. The satellite images captured by L5TM are free and 

downloadable from the USGS at http://earthexplorer.usgs.gov/(USGS 2013). 

Satellite images were downloaded for use only if they met the following criteria: the images 

were captured during the study period; covered the entire study area (geographically); had less 

than 14% cloud cover and were taken under clear weather conditions. More cloud cover and 

unclear weather conditions can inhibit the signal strength reflected back to the satellite and cause 

underestimation of the ground surface temperature. Each image had 7 spectral bands of 
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information. Thermal infrared band 6 (10.4  12.5 µm) provides the data that can be converted 

from raw digital numbers to LST. To convert from a digital number to a temperature, calibration 

formulas, atmospheric correction tools and transformations were necessary (Figure 1). Once an 

image was selected by our criteria, ERDAS Imagine 9.2 software (Leica Geosystems, Inc., 

Atlanta, Georgia) was used to convert the image (from a TIFF file to an IMG file) to a usable 

format for GIS. ArcGIS v9.3.1 (ESRI, Redlands, CA) was used to perform the calculations 

outlined below. First we converted the digital numbers taken from the raw image into atsensor 

spectral radiance (LTOA, the temperature read at the sensor, W/m
2 

· sr · µm). The source 

equations and calibration constants developed specifically for L5TM images were used from the 

process outlined by G. Chander (Chander et al. 2009). LTOA was then used to calculate an actual 

ground surface temperature. 

Because the satellite signal received by the sensor is in space, the effects of the atmosphere (i.e. 

air pollution, weather) and surface emissivity (the ratio of the radiation emitted by a surface to 

the radiation emitted by a blackbody at the same temperature, i.e. how well different surfaces 

reflect solar energy) can have considerable influence on the accuracy of the satellitederived 

surface temperature. To account for these influences, we used a tool which estimates 

atmospheric influences in conjunction with a data layer of emissivity for the study area. Using 

this webbased atmospheric correction parameter tool developed by Barsi et al. located at 

http://atmcorr.gsfc.nasa.gov/ (Barsi et al. 2003) we estimated 3 scene specific parameters for 

each satellite image. The tool required the following inputs for each satellite scene: year, month, 

day, Greenwich Mean Time (GMT) and latitude and longitude coordinates. The outputs of this 

tool were the 3 parameters: atmospheric transmission (T, unitless), upwelling radiance (Lu, 

11
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2 2 2
W/m · sr · 1m) and downwelling radiance (Ld, W/m · sr · µm) where W/m * sr * µm are the 

units of spectral radiance: watts per square meter per steradian per micrometer. 

Values of emissivity for the study area were then estimated by examining the land use/land cover 

designations, downloaded for the region from the 2006 NLCD. We considered the differences in 

emissivity of various impervious surface land cover types in the main equation to calculate 

surface temperature. Because our landcover data does not distinguish among different types of 

impervious surface, we were unable to represent possible differences in emissivities among 

them. We created a layer of emissivity (ε, range 0 to 1) for the study area based on reference 

emissivity values for various landcover classes used in other studies (Lillesand et al. 2008). 

These values of emissivity, coupled with the atmospheric correction parameters, were used in the 

following equation to calculate the radiance of a blackbody target of kinetic temperature (LT), 

which ultimately represented surface temperature: 

LT = (LTOA  Lu  (1  ε) · Ld) / (Τ*ε), [1] 

where LT = Radiance of a blackbody target of kinetic temperature and LTOA = at sensor spectral 

radiance, W/m2*sr*um. We then transformed LT into a temperature in Kelvin (using Planck’s 

equation), and then converted Kelvin to °C. 

Once the scene was transformed to a surface temperature in units of °C, temperatures outside our 

range of interest (below 0 °C) or areas of no data (water) were masked out of the layer (given a 

value of NoData). The implausible ranges were likely a result of some cloud cover over a certain 

point, values over a body of water, or possibly a source of error in the reflectance value that 

would cause noise in the analysis. 

12
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Geographical and statistical analysis 

Using spatial analysis tools in ArcGIS, the LST and SI were averaged over the areas of the 

following 7 concentric circles with different radii around each outdoor monitoring unit (buffers): 

at the point (0 m), 100, 200, 300, 400, 500, and 800 m. We assessed the values at different 

buffers because they can be representative of physical processes that can occur at different 

spatial scales within the urban canopy layer, the layer of the urban atmosphere extending upward 

from the surface to building height (Roy and Yuan 2009). These spatial scales range from the 

microlevel (at the home = 0 m) to more macrolevel (block, neighborhood) exposures. The 

physical mechanism of correlation is that thermometers ‘sense’ temperature that is transferred 

from the ‘source area’ (i.e. surfaces below, around) to the sensors through turbulent transport. 

Thus the relationship between source area (i.e. LST) and thermometer is dependent on both 

atmospheric and surface states. Furthermore, LST and groundbased temperature can be 

influenced by a number of physical factors relevant to the study area: surface heterogeneity, 

considerable variability in temperature over small areas, and physical structures, and the varying 

buffers allowed exploration of on what scale these factors might operate. From a health 

perspective, understanding correlations at these different spatial scales can inform tools for use at 

the urbanlocal scale, to predict ‘hot spots’ where prevention of heat illness and deaths is 

especially needed. The grid cells for SI (30m resolution) and LST (120m resolution) that were 

contained completely within and intersected the corresponding buffer were included in the 

calculation. The zonalstats operation was used to generate the average LST and SI for each of 

the buffers. Spearman rank correlation coefficients were calculated between the mean LSTs and 

SIs and the temperatures from the outdoor monitoring network averaged over 5 time periods: 

12:05 pm [to correspond to the time of the satellite image, (average of 12:00 and 12:10 pm)]; 

13
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average temperature from 9:20 am to 12:10 pm (3hr average); average temperature from 4:00 to 

5:00 am on 8/19/09 (nighttime temperature); average temperature from 12:10 pm on 8/18/09 to 

12:10 pm 8/19/09 (daily); and, August average monthly temperature (monthly). The maximum 

and minimum temperatures and standard deviation for each group of measurements were 

calculated. These different time periods were chosen to see whether LST and/or SI taken at one 

point of time would give a better picture of instantaneous vs. longerterm spatial variation in 

temperatures in the study area. 

Related to this point, we explored how representative the LST captured by the one usable 2009 

LST image was of LST over a longer time frame, especially in this region where population 

growth and economic development have been static or declining in recent years. To better 

understand if the 2009 scene showed a similar spatial variation of temperatures within the region 

as other images from different time points and different years, multiple LST images from a 10

year time span were processed and evaluated in the same manner as the 2009 image. From the 

years 1999 to 2009, we found only 4 ‘high quality’ images for the years 2002, 2003, 2004 and 

2008, during our study months of JuneAugust 31
st 
. Correlation coefficients were calculated 

comparing a composite image (i.e. all 5 usable LST scenes overlaid in GIS) versus each single 

year scene. Additionally, the entire LST scenes (i.e. all 245,188 pixels, 120 m resolution) were 

used for this analysis, not just the temperatures extracted at the various buffers around the HOBO 

monitors. 

SAS v 9.2 (SAS Institute, Cary, NC) was used for all statistical analysis and ArcGIS 9 was used 

for all spatial analysis. 

14
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RESULTS 

Temperature data from 19 out of 24 groundbased monitors positioned throughout the county 

were used in the analysis. Five of the temperature monitors were excluded due to siting 

conditions that could have jeopardized the readings, such as being too close to a building. A 

search in the Landsat 4 and 5 TM archive datasets for the Detroit, Michigan area (latitude 

42.331427, longitude 83.0457538), yielded a total of 21 satellite images. Out of these 21 

images, 17 had a cloud cover percentage greater than 14%, and 16 did not cover the study area 

geographically. Consequently, 1 image, taken by the satellite on August 19, 2009, met our 

criteria (i.e., covered the geographic area of interest; had cloud cover of less than 14%, captured 

during the time period of the study (June 13 – September 30, 2009). This image was acquired 

during the daytime at 16:05 GMT (12:05 PM EDT). The quality of band 6 was scored as a 9, the 

highest score for images. This value reflects the quality and level of errors detected in the image. 

(Explanation can be found at http://earthexplorer.usgs.gov/). Figure 2 shows the final processed 

band 6 image of the study area. 

The highest levels of mean SI were seen in the 500m buffer zones across all of the locations 

(Table 1). Overall, the New Center location had the highest SIs (minmax range: 42 to 87.7%), 

and the New Boston location had the lowest overall SIs (minmax range: 9.0 to 18.5%). The 

New Center area location had the highest LSTs compared to other locations, from 24.4 to 25.6 

°C, while the New Boston area had the lowest overall LSTs, from 18.2 to 18.4 °C. In terms of 

the ground based temperature readings, the instantaneous 12:05 pm time point at each location 

showed a higher max temperature than the other recorded time points. 

15
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At least two statistically significant correlations, for each radius distance, were seen between 

LST and the groundbased temperatures for the daily and monthly temperature for all buffers 

except 100 m, as shown in Table 2. At least three statistically significant correlations were also 

seen for each radius distance between SI and groundbased air temperature measurements for the 

time periods for nighttime temperature, daily temperature and monthly temperature at all buffers 

except the 0m point. For the relationship between SI and LST, statistically significant 

correlations were found with Spearman correlation coefficients ranging from 0.49 to 0.91, as 

shown in Table 3. 

In the analysis comparing spatial variation in LST using 5 summertime satellite images from the 

years 2002, 2003, 2004, 2008, and 2009, LST temperature ranges and the areas with the highest 

temperatures were consistent over the years. The 2009 LST scene was highly correlated with the 

5year composite LST scene (R
2
=0.96). We also found a high correlation between the SI scenes 

from 2 different years, 2001 and 2006 (R
2
=0.98). 

DISCUSSION 

The purpose of this study was to assess the relationship between LST and SI measurements and 

groundbased air temperature measurements in the Detroit Metropolitan Region. Our results 

showed a statistically significant relationship between LSTs and SI at all buffers, as well as LSTs 

and SIs and the groundbased air temperatures at certain buffers. These correlations between 

LST and SI are consistent with findings from other published studies (Cheung 2002; Imhoff et al. 

2010; Zhou and Shepherd 2009; Uejio et al. 2011; Yuan and Bauer 2007). This suggests that SI 

data, which requires much less processing compared to the LST data, could be used as a proxy 

for LST. Consequently, public health researchers and practitioners may still be able to use a 

16
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fairly straightforward method to determine city hotspots using high SI as an indicator of 

potential increased temperature exposure. 

Our study used standard methods which facilitate comparisons with other work, and is the first 

analysis of this kind during the summer time in an large, urban Midwest city. Detroit has unique 

features, including a higher proportion of vacant lots than other metropolitan areas. 

Additionally, our study simultaneously explored the relationship between SI, LST calculated 

from thermal imagery, and groundbased temperature measures, adding the ‘groundtruthing’ 

element that has been called for to independently validate the satellite imagery as a proxy for 

human scale exposures (Voogt and Oke 2003). 

The consistency of our findings with other studies suggest that these unique features do not 

impair the overall utility of satellite imagery for public health applications. In Detroit, the 2009 

satellitederived LST image—corrected for atmospheric effects and spatial variations in 

emissivity—as well as the SI image from the 2006 NLCD might be suitable to represent air 

temperature variability between sites for heat exposure studies in the region or for targeting heat

health interventions. Because our landcover data does not distinguish among different types of 

impervious surface, we were unable to represent possible differences in emissivities among them 

and this is a type of variability that contributes to possible uncertainties in our analysis. The 

analysis we did comparing the 2009 scene with LST calculated from 4 previous years' 

summertime scenes showed that the LST estimated from the satellite images was relatively 

consistent over time, suggesting that changes in land use were not substantial in the Detroit 

Metropolitan Region. Further, for application in heathealth studies, LST is better suited for 

representing physical properties that are stable over time and can affect human temperature 

exposure rather than as a proxy for actual ambient air temperature at a particular point in time. 
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Our results complement those of two sister studies of the Detroit Metropolitan Area examining 

spatial variation of temperature during the entire summer of 2008. The first study used the same 

observational network of air temperature monitors used in the present study in conjunction with 

airport temperature monitors and monitors operated by the state of Michigan Department of 

Environmental Quality (Oswald et al. 2012). This study found the correlation between summer 

mean daily low temperature anomalies (the daily residuals at each location minus measurement 

uncertainty) in 2009 and SI in 2001 (r = 0.68 at the 200m buffer, p < 0.001) to be higher than 

between daily temperature anomalies and other geographic characteristics. This suggests that in 

relatively sprawling cities, the urban heat island most closely follows SI and would have a 

unique structure in each city based on the SI structure (Oswald et al. 2012). A second study used 

geospatial approaches to create a continuous, spatial layer of estimated air temperature and 

found high correlations between SI measured in 2006 and observed air temperatures in 2008 

(Zhang et al. 2011). Neither of those two studies examined LST, but the fact that they observed 

correlations between SI and air temperatures using different methodologies supports our finding 

that SI and, by extension, LST are moderately correlated with air temperature. 

Previous studies have groundtruthed L5TM data using airborne thermal scanner flights (Voogt 

and Oke 1998), or using satellite data in conjunction with groundbased air temperature 

measurements with other remote sensing predictors to create a model for air temperature 

(Cristobal et al. 2008). Other researchers have also created a spatiotemporal general linear 

model to estimate surface temperature using several predictors with 15 LANDSAT multispectral 

images taken between 19872002 for the Quebec Province, Canada, spanning the months of June 

to the end of August (Kestens et al. 2011). Using ambient temperatures recorded from multiple 

meteorological stations, they found that the 3day average air temperature was a strong predictor 
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of LST, as well as the normalized difference vegetative index (NDVI) and land cover categories. 

Their results suggest that increasing the number of meteorological and geographical predictors 

could provide more precise estimates of heat exposure in urban areas. 

An added benefit of using SI as a proxy for temperature exposure is that increasing vegetative 

cover and other changes can reduce the heattrapping potential of the urban landscape, so results 

of studies using SI could be of direct relevance for policy changes. This finding might be helpful 

in the urban planning sector. 

Correlations between LST and groundbased temperature measurements (Table 2), were stronger 

at the largest radii (e.g. 500 m and 800m), and stronger using the average temperature from day 1 

to day 2 and the monthly temperature. Several possible reasons for this come to mind. Urban 

areas are heterogeneous in topography, physical structures, land use, etc. so ‘averaging’ of the 

LST temperature over a larger buffer zone may ‘drown’ out the physical noise that can influence 

the air temperature at a specific point. 

The stronger correlations when temperatures are averaged over longer time spans suggest that 

instantaneous temperatures are less indicative of the overall spatial pattern of the temperature 

tendencies. Morning temperatures are likely less correlated due to lack of turbulent transport 

(the main mechanism relating source area to sensor) and influence of cold air drainage (i.e. 

topography). However, in terms of estimating personal exposure, lower correlation between 

these satellite data sources and the actual groundbased air temperature readings at 12:05 pm and 

the 3hour average underscores the importance of identifying other tools that can better gauge 

actual shortterm temperature exposure near the ground surface, especially when health 

outcomes that can result from acute exposures are of interest. Previous epidemiologic studies of 
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heat and daily mortality that have included Detroit have found that heat exposure on days 01 

have been most relevant (e.g., Anderson and Bell 2009), though heat wave durations of at least 4 

days may have an additional effect (e.g., Gasparinni and Armstrong 2010). The day is the 

common time unit of analysis for administrative databases of health outcomes (hospitalization, 

deaths, births), but other clinical outcomes that could be affected by heat (e.g., blood pressure, 

pulse rate) may be available at a finer time scale, such that hourspecific temperature data would 

be relevant. Longer duration of warm temperatures could also be relevant to both the exposure 

and the health resilience of residents, relating to air conditioning use and overall energy demand 

in homes. 

Using the LST and SI data in conjunction with health outcome data could provide a more general 

understanding of spatial heat vulnerability. For example, an epidemiological investigation of a 

1993 extreme heat event in Philadelphia used satellite imagery and geostatistical methods to 

determine if vulnerability to heatrelated mortality was higher in areas with higher urban heat 

intensity (Johnson and Wilson 2009). They found that the heat load of the environment detected 

by the Landsat satellite data was potentially a contributing factor to heatrelated deaths during 

the summer of 1993, and that the thermal data used in this study could be used to develop models 

of placebased vulnerability.. 

More frequent daily observations are made by MODIS. However, this sensor records thermal 

emission at a spatial resolution (1km) too coarse for microurban heat island investigations. 

Future studies should investigate the publichealth implications of this tradeoff between 

temporal frequency and spatial resolution. Additionally, researchers have created new methods 

to better utilize satellite imagery to assess land surface temperature. In particular, physical and 

statistical methods for downscaling MODIS scenes (Liu and Pu 2008), and enhanced physical 
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methods that will reduce downscaling uncertainty, reduce the smooth effects and block effects 

due to isothermal assumption (Liu and Zhu 2012) could be incorporated into health studies. 

Our groundbased temperature monitors were mounted 1.5 m above the ground, and the non

statistically significant relationships that we found between LST and the groundbased 

temperature monitoring network—for all buffers for the instantaneous and 3hour average 

temperatures as well as the 0700 m buffers for average daily temperature—might be a result of 

mixing, advection, and convection processes within the boundary layer that influence the air 

temperatures recorded by the outdoor temperature monitor. Since we are comparing two 

different types of measurements–surface temperature and air temperature—the correlations 

between these measurements might not be as strong, due to logistical (e.g. timing and 

resolution), as well as physical (e.g. advection, wind) considerations that could impact the 

derived surface temperatures. 

Limitations 

The availability of satellite products is a key limitation. Out of 21 LST scenes examined, only 

one scene was usable in that it lacked significant cloud cover and covered the study area 

geographically. The 16day cycle on which Landsat images are acquired for a specific area does 

not afford researchers the opportunity to compare multiple images within a useful timeframe. 

Additionally, L5TM data has a large spatial resolution (120 m), which might not capture the full 

heterogeneity of an urban environment (Johnson 2009). 

Further, although we were able to match the time of acquisition of the ground data to the same 

time as the satellite data, the 12:05 pm passing time of the Landsat satellite is not optimal for 

temperaturehealth studies. First, this time generally corresponds to a time of the day when 
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ground temperatures transition from being cooler than air temperature to being warmer than air 

temperature. This means that, within the diurnal cycle, surface temperatures are not as 

significant drivers of air temperatures as they are later in the day. Second, exposure studies have 

tended to focus on maximum and minimum temperatures and this time corresponds with neither 

of these (Basu 2009). While shorter term ground based temperature timeframes did not yield 

strong correlations with SI or LST, composites of older satellite images could be one input into a 

more comprehensive planning tool or index to help describe vulnerability. 

CONCLUSIONS 

Our results support the need for an increased effort, nationally, by public and private entities, to 

create useful remotelysensed data sources that can be applied to public health practice. A 

workshop report from the National Academy of Sciences (NAS 2007) discussed the challenges 

and potential applications of using remotely sensed data for public health. The report indicated 

that one of the major challenges to applying this remotely sensed data in the health arena is the 

limited in situ groundtruthing data accompanying remote sensing technology to verify analysis, 

and the high learning curve to using the tools required to analyze remotely sensed data. Our 

study gathered “groundtruthing” data needed to validate satellite derived LST as well as SI. 

However, our results highlight that issues of spatial resolution, image availability over certain 

time periods and the complex urban landscape remain challenges in the effort to integrate 

remotely sensed data with public health research and practice. 

From a public health perspective, it is important to target resources and health 

interventions for the most vulnerable populations. The availability and usefulness of remote 

sensing data, integrated with social and economic demographic data, can provide a powerful tool 
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for assessing vulnerability. A quality of life study conducted by AthensClarke County used one 

cloudfree image, aerial photographs and U.S. Census data to overlay biophysical (land surface 

temperature, NDVI, land use and land cover) and socioeconomic layers (population density, per 

capita income, median home value, education) to create a quality of life indicator (Lo and Faber 

1997). The research found a strong relationship between biophysical and socioeconomic 

variables, which could be useful to assess vulnerability in the public health arena. In the field of 

heat epidemiology, being able to utilize a userfriendly data source, like SI as a proxy for surface 

temperature exposure, can further our understanding of spatial vulnerability to heat. Another 

study has already shown that areas of the Detroit Metropolitan Region with high SI had 

statistically significant correlations with several sociodemographic variables: being age 65 years 

and older living alone, being able to leave the home, education level, living below the poverty 

line and being nonWhite (WhiteNewsome et al. 2009). 

There are several ways that remote sensing data could be better integrated into public health 

practice: 1) increasing the capture frequency of remotely sensed images available for research 

and planning purposes; 2) providing more highly processed data accessible to the public, at a 

finer resolution (1015 m) and if possible at a higher temporal frequency that could be more 

useful for city and county level authorities; 3) Commissioning more research to groundtruth 

satellitederived land surface temperatures for different sized urban areas, and establishing a set 

of fairly simple, standard best practices that can be used to estimate the influences of 

atmospheric and other factors on deriving a precise LST value from remote sensed imagery 

could be useful for planning for extreme heat events. Landsat data are the most consistent and 

widely available source of relatively highresolution thermal information from satellites, but can 

be limited due to the number of clear images available at certain days and times. A gap in 
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availability of these data exists, but continued acquisition of these data or data of comparable 

resolution has the potential to provide important spatial information about differential heat 

exposures. 

One contribution of this particular study is important is to underscore the importance of the 

limitations of data, especially and to offer the perspective that it is critical to have data that is 

accessible, useful and timely for those working in the field of public health. One of the main 

objectives of this study was to see if a “non remotesensing professional” could create a tool – 

using available data  that can be used to estimate heat exposure. Reporting on the challenges we 

faced in doing this is one way to bring the issue to the attention of the remote sensing 

community. The more practitioners demand the availability and need for this data, we hope that 

our research and other research that attempts to use the ‘simplest methods’ can provide the 

impetus to fill this wellknown gaps in data needs overcome these limitations. 
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Table 1. Summary of satellitederived average land surface temperature (LST) measurements and groundbased temperature 

monitoring network temperatures. 

Percent surface imperviousness at different 

radii (in meters) around the outdoor 

monitoring point 

Landsat derived surface temperatures (°C) at 

different radii (in meters) around the outdoor 

monitoring point 

Ground based temperature network readings (°C) 

Location 

Name 

0 100 300 400 500 800 0 100 300 400 500 800 Sat
a 

3hr 

avg 
b 

Night
c 

Daily 

avg 
d 

Monthly 

avg 
e 

Allen Park 13.0 29.3 51.5 50.9 47.9 44.8 21.6 21.3 22.2 22.3 22.3 21.8 26.5 25.3 19.6 24.0 21.7 

Canton 59.0 33.8 36.3 36.2 37.1 35.5 21.1 21.4 21.8 22.0 21.9 21.7 25.6 24.4 17.1 22.2 20.7 

Conner 69.0 64.1 75.1 74.3 74.8 73.4 23.4 23.1 22.7 23.0 23.1 23.7 26.3 25.2 18.8 24.4 22.0 

Corktown 35.0 48.9 48.8 53.0 59.7 65.8 21.1 21.6 22.1 22.4 22.9 23.4 27.6 25.6 19.0 23.7 21.7 

East Detroit 61.0 71.0 50.4 52.2 53.4 54.5 22.1 21.8 21.2 21.3 21.3 21.4 26.2 24.9 20.4 24.4 22.0 

East Jefferson 32.0 37.0 41.1 44.5 45.1 49.1 19.2 19.2 19.7 20.0 20.1 20.4 23.5 23.4 19.3 23.2 20.9 

Garden City 47.0 50.5 50.8 51.1 51.9 52.7 22.0 22.0 21.8 22.0 22.2 22.3 26.7 23.9 18.8 23.4 21.3 

Indian Village 58.0 42.2 41.2 43.5 47.0 51.2 20.4 20.3 20.1 20.4 20.7 21.2 26.7 23.3 19.8 23.8 21.7 

Joy Rd 35.0 19.6 15.1 13.3 12.2 13.7 20.8 21.0 19.6 19.1 18.9 19.0 26.7 25.3 18.2 23.3 21.1 

New Boston 9.0 9.0 18.5 18.3 16.8 13.9 18.6 18.4 18.4 18.4 18.4 18.4 27.3 25.5 18.3 22.6 20.9 

New Center 42.0 79.2 86.1 87.4 87.7 83.1 24.9 25.6 25.5 25.2 24.9 24.4 26.7 25.1 21.0 24.8 22.3 

Redford2 44.0 49.7 55.7 55.6 56.5 57.0 22.6 22.9 22.8 22.7 22.6 22.4 24.8 24.7 19.3 23.8 21.5 

UM Dearborn 14.0 39.1 35.3 37.1 37.5 33.9 21.3 21.2 21.5 21.1 21.1 20.5 26.1 24.8 18.2 23.0 21.1 

West Detroit 1 25.0 45.0 43.7 43.3 45.8 51.0 20.8 20.9 21.1 21.2 21.4 21.8 25.1 23.7 19.7 23.6 21.5 

West Detroit 3 57.0 66.4 69.6 65.6 62.5 57.3 23.5 23.6 23.3 22.9 22.5 22.2 28.0 24.0 19.7 24.0 21.5 

West Detroit 5 55.0 54.4 50.0 53.3 55.8 62.3 21.2 21.1 21.5 21.7 22.0 22.5 27.7 26.4 18.9 23.5 21.6 

West Village 30.0 45.0 51.8 50.5 48.1 50.7 20.5 20.5 20.7 20.9 20.9 21.3 26.7 25.3 19.9 24.1 21.7 

Westland 84.0 47.4 45.2 47.5 45.3 38.5 24.7 23.9 22.3 22.1 21.7 21.0 26.5 23.2 18.4 23.1 21.2 

Wayne State 

University 

32.0 76.1 81.5 75.0 70.9 71.5 23.1 23.7 24.1 23.9 23.6 23.5 26.7 25.3 20.1 24.2 22.0 

Min 9.0 9.0 15.1 13.3 12.2 13.7 18.6 18.4 18.4 18.4 18.4 18.4 23.5 23.2 17.1 22.2 20.7 

Max 84.0 79.2 86.1 87.4 87.7 83.1 24.9 25.6 25.5 25.2 24.9 24.4 28.0 26.4 21.0 24.8 22.3 

Standard 

Deviation 

20.1 18.4 18.5 17.9 17.9 18.1 1.7 1.7 1.7 1.6 1.5 1.5 1.1 0.9 0.9 0.6 0.4 

a
Sat  : instantaneous  satellite  temperature  taken  at  12:05  

b
3hr  Avg:  averag  e temperatur  e fro  m 9:20  a  m to  12:10   pm P

 
M. 

c
Night:  averag  e nighttime  

temperature  fro  m 4:00  to  5:00  a  m on  8/19/200
 

9 
d
Dail  y Avg:  averag  e temperature  fro  m 12:10  p  m on  8/18/09  to  12:1  0 p  m 8/19/200

 
9 

e
Monthl  y Avg:  

August  averag  e monthl  y temperature 
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Table 2. Spearman rank correlation coefficients and pvalues between satellitederived land surface temperature (LST) and 

surface imperviousness measurements (SI), with groundbased temperature measurements. 

Measurement Concentric radii 

distances around 

monitoring point used 

to calculate an average 

Groundbased Temperature Measurements 

Instantaneous 

12:05 PM 

Temperature on 

8/19/2009 

Average 

temperature from 

9:20 am  12:10 

pm 

Average 

Temperature 

from 4:00 to 

5:00 am on 

8/19/2009 

Average 

Temperature 

from 12:05 pm 

on 8/18/09 to 

12:10 pm 

8/19/2009 

August Average 

Monthly 

Temperature 

LST At Point (0 m) 0.0018 (0.99) 0.11 (0.66) 0.22 (0.36) 0.47 (0.043) 0.47 (0.041) 

100 meters 0.026 (0.91) 0.10 (0.68) 0.21 (0.38) 0.44 (0.060) 0.44 (0.053) 

300 meters 0.0070 (0.98) 0.0070 (0.98) 0.28 (0.24) 0.48 (0.038) 0.51 (0.027) 

400 meters 0.030 (0.90) 0.084(0.73) 0.33 (0.17) 0.55 (0.015) 0.59 (0.0084) 

500 meters 0.068 (0.78) 0.18 (0.45) 0.32 (0.18) 0.55 (0.014) 0.61 (0.0057) 

800 m 0.13 (0.60) 0.25 (0.30) 0.41 (0.085) 0.62 (0.0048) 0.68 (0.0014) 

SI At Point (0 m) 0.058 (0.81) 0.39 (0.098) 0.0097 (0.97) 0.17 (0.47) 0.71 (0.48) 

100 meters 0.16 (0.50) 0.019 (0.94) 0.59 (0.0075) 0.72 (0.0005) 0.69 (0.001) 

300 meters 0.081 (0.74) 0.15 (0.54) 0.66 (0.002) 0.83 (<0.0001) 0.81 (<0.0001) 

400 meters 0.17 (0.48) 0.20 (0.40) 0.59 (0.0077) 0.76 (0.0001) 0.77 (0.0001) 

500 meters 0.22 (0.36) 0.22 (0.36) 0.62 (0.0043) 0.81 (<0.0001) 0.82 (<0.0001) 

800 meters 0.22 (0.37) 0.17 (0.48) 0.60 (0.0062) 0.75 (0.0002) 0.77 (0.0001) 

Spearman correlation statistical test was used to calculate a correlation coefficient. P values < 0.05 denote significance.
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Table 3. Spearman rank correlation coefficients (r) between satellitederived land surface 

temperature (LST) and percent surface imperviousness (SI). 
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 LST  vs.  SI  calculated  at  the  following  concentric  radii  (meters)  r (pvalue) 
 
   0 (at the point)  0.49(0.032)  

 100 0.74(0.003)  

  200 0.74(<0.0003)  

 300 0.79(<0.0001)  

 400 0.84(<0.0001)  

 500 0.86(<0.0001)  

 800 0.91(<0.0001)  
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Figure Legends 

Figure 1. Flowchart that describes the processing method for converting raw satellite images to 

land surface temperature. Parallelograms denote data inputs, squares denote calculations and the 

shaded oval denotes the final value (temperature leaving the earth’s surface). 

Figure 2. Final processed Landsat5 TM image of the Detroit Metropolitan Region study area 

and the locations of the groundbased temperature monitors (HOBOs). 
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